Zentrum für Forschung und Transfer — www.th-wildau.de/patente

Pyroelektrischer Sensor für elektromagnetische Strahlung

DIE ERFINDUNG

Laserlicht ist durch seine hohe spektrale Reinheit, eine geringe Divergenz sowie eine gute Fokussierbarkeit zum Erreichen hoher Leistungsdichten ausgezeichnet.
Lasersysteme sind über einen sehr großen Bereich des elektromagnetischen Spektrums als Dauerstrich- oder Pulslaser verfügbar. Aufgrund ihrer einzigartigen Eigenschaften sind Laser heutzutage unverzichtbare Werkzeuge in unserem Alltag. Ihre Einsatzgebiete erstecken sich u.a. von der Materialbearbeitung, über biomedizinische und umweltanalytische Anwendungen bis hin zur Informations- und Kommunikationstechnik.

Die Verwendung von Lasern in diversen
Anwendungsbereichen erfordert für die jeweiligen
Anwender eine passgenaue Charakterisierung des
Lasersystems. Hierfür sind u.a. Leistungs- und
Energiemessgeräte vonnöten. Aufgrund der enormen
Vielfalt der verfügbaren Lasersysteme können die am
Markt verfügbaren Sensoren (z.B. thermische Detektoren,
Quantendetektoren) nicht universell eingesetzt werden.
Vielmehr sind sie aufgrund ihrer Eigenschaften für jeweils
begrenzte Lasersysteme ausgelegt.

Die Erfindung: es wird ein neuartiger pyroelektrischer Sensor für die Detektion elektromagnetischer Strahlung sowie ein dazugehöriges Herstellungsverfahren vorgeschlagen. Der pyroelektrische Sensor umfasst ein Substrat, auf dem eine pyroelektrische Schicht mit Elektroden sowie eine spezielle Absorberschicht vorzugsweise mittels Gasphasenabscheidung aufgebracht werden. Optional können dazwischen Haftvermittlerschichten abgeschieden werden. Das Anpassen der Prozessparameter bei der Gasphasenabscheidung ermöglicht hierbei ein gezieltes Schichtwachstum und somit eine besonders günstige Morphologie der Schichten. Die somit erreichten Sensor-Parameter übertreffen die der bekannten Sensoren und ermöglichen eine breite Anwendung zur Laserleistungsmessung.

Vorteile: Geringe Absorberschichtdicke ($50 \text{ nm} - 2 \text{ } \mu\text{m}$) für kurze Ansprechzeiten, Konstante Absorption im breiten Spektralbereich (180 nm - 2500 nm), Hohe, winkelunabhängige Absorption, Hohe Zerstörschwelle

Anwendung: Leistungs- und Energiemessungen von Lasersystemen verschiedenster Bauarten

ERFINDER

Claus Villringer, Helge Lux, Sigurd Schrader, Dirk Wolanski (IHP)

PATENTSITUATION

- Patentanmeldung: DE102020116989
 A1, Prioritätstag 28.06.2019, anhängig
- Entwicklungsstand der Technologie:
 Machbarkeit im Labor gezeigt
- Status der Patentverwertung:
 Interessenten für Patentkauf,
 Lizenzierung oder FuE-Kooperation gesucht

ptische Technologien/Photonil

Yijian Tang, MBA, M.Sc. Patentingenieurin

Tel: +49 (0) 3375 508 852 E-Mail: patente@th-wildau.de Technische Hochschule Wildau Zentrum für Forschung und Transfer