

INSTITUTE OF LOW TEMPERATURE AND STRUCTURE RESEARCH POLISH ACADEMY OF SCIENCES

Wieslaw Strek,

Przemysław Wiewiórski, Włodzimierz Miśta, Robert Tomala, Mariusz Stefanski Laser induced generation of hydrogen from methanol, ethanol, water and methanol vapor by using graphene target

EcoPhotonics - Wildau, Germany

08.03.2022 | 13.00 - 16.00 UHR EcoPhotonics - Photonik und künstliche Intelligenz für Nachhaltigkeit

#digital

ILT&SR structure

- Division of Nanomaterials Chemistry and Catalysis
- Division of Low Temperature and Superconductivity
- Division of Magnetic Research
- Division of Structure Research
- Division of Optical Spectroscopy

License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

Article

http://pubs.acs.org/journal/acsodf

Laser-Induced Hydrogen Generation from Methanol with Graphene Aerogel as the Target

Wieslaw Strek, Przemysław Wiewiórski, Włodzimierz Mista, Taras Hanulia, and Robert Tomala*

Cite This: ACS Omega 2021, 6, 3711–3716

Article

Laser-Induced Generation of Hydrogen in Water by Using Graphene Target

Wieslaw Strek, Przemysław Wiewiórski, Włodzimierz Miśta, Robert Tomala and Mariusz Stefanski *💿

Chemical Physics Letters 775 (2021) 138649

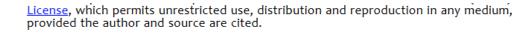
Research paper

Laser induced hydrogen emission from ethanol with dispersed graphene particles

W. Strek, W. Mista, P. Wiewiorski, R. Tomala

Institute of Low Temperature and Structure Research, Polish Academy of Science, Okolna 2, 50-422 Wroclaw, Poland

Laser-induced generation of hydrogen from methanol vapor


W. Strek, P. Wiewiórski, W. Miśta, R. Tomala, M. Stefanski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland *corresponding author: m.stefanski@intibs.pl

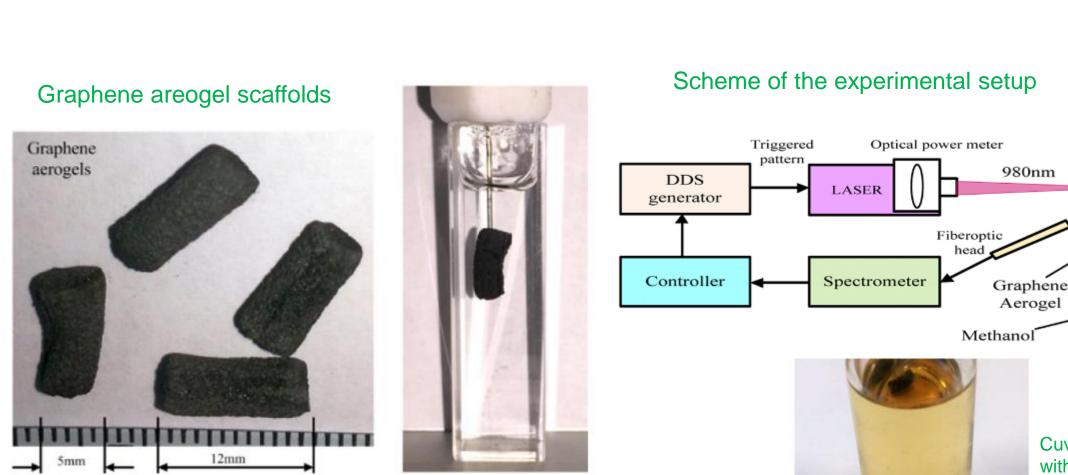
submitted

International Journal of Hydrogen Energy

ACS AUTHORCHOICE

Laser-Induced Hydrogen Generation from Methanol with Graphene Aerogel as the Target

Wieslaw Strek, Przemyslaw Wiewiórski, Wlodzimierz Mista, Taras Hanulia, and Robert Tomala*



Cite This: ACS Omega 2021, 6, 3711–3716

ACS OMEGA

http://pubs.acs.org/journal/acsodf

Cuvette of methanol with graphene foam scaffold after irradiation with laser diode 975 nm

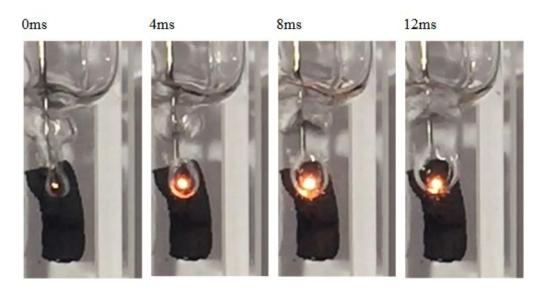
GC+MS

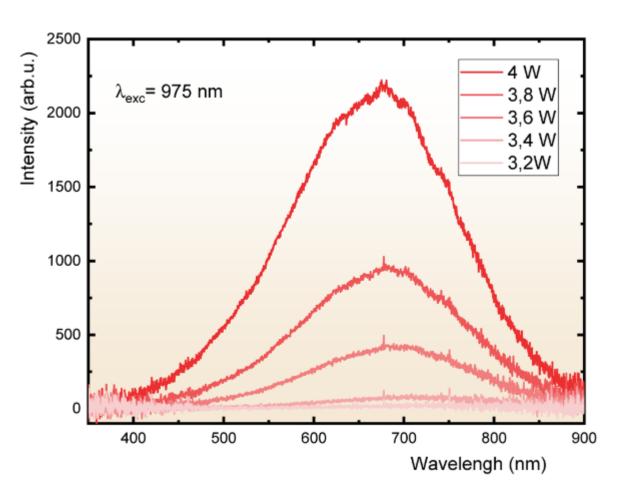
He

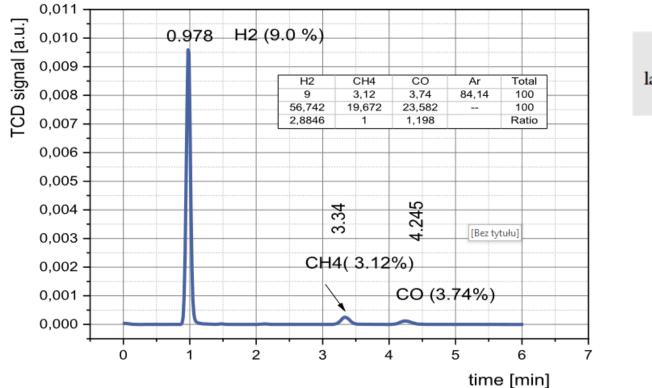
H2

He

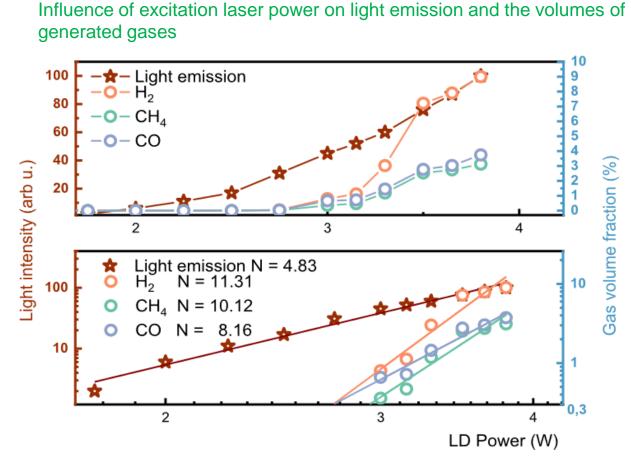
5



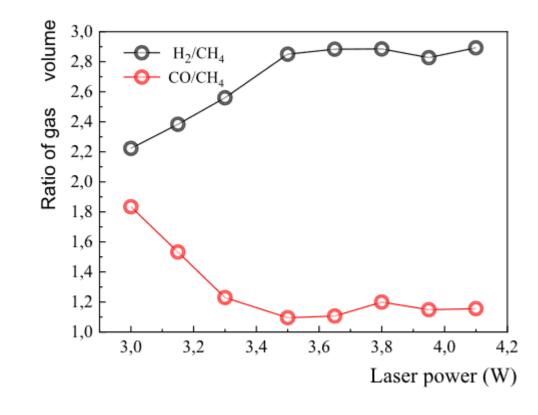

6


H₂ generation from methanol with Graphene aerogel as the target

Evolution of a single bubble during continuous laser excitation of graphene aerogel in the methanol

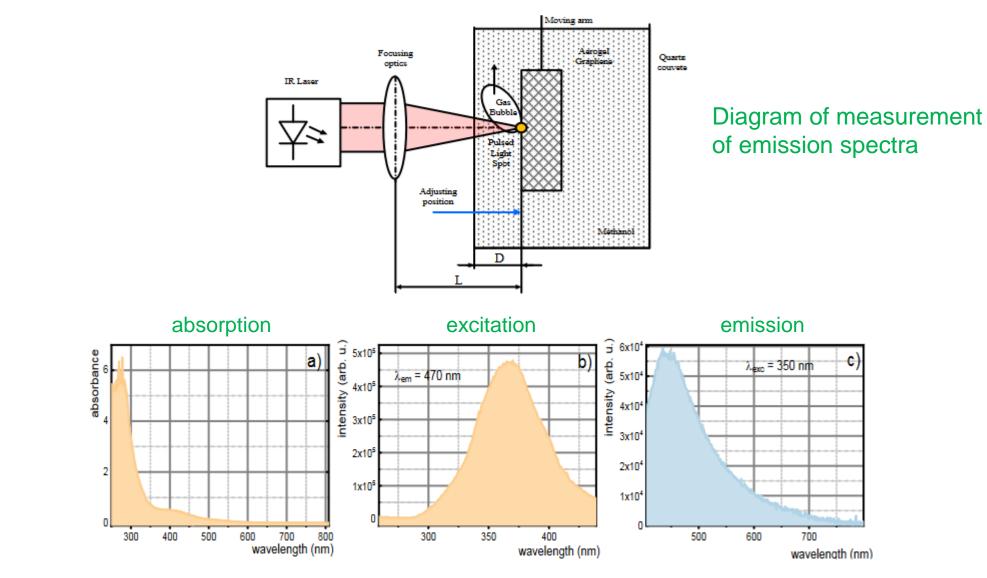


	gas products						
laser power P _O [W]	hydrogen H ₂ [%]	methane CH ₄ [%]	carbon monoxide CO [%]				
2.50	43.96	19.78	36.26				
2.75	48.48	20.35	31.17				
3.00	53.45	20.88	25.66				
3.15	57.63	20.22	22.14				
3.30	57.79	20.04	22.17				
3.50	56.75	19.67	23.58				
3.65	56.82	20.1	23.08				
3.80	57.30	19.81	22.89				


gas products

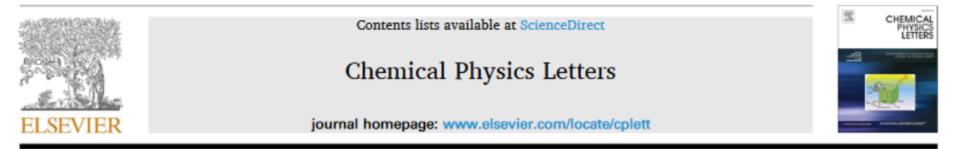
Gas products of LI dissociation of methanol by using the GA scaffold as the target (in Ar flow 5 mL/min)

7



Comparison of LI light emission intensity and emitted gas fractions (H2, CO, and CH4) of the GA scaffold on excitation LD power in log/log scale

Influence of excitation laser power on H_2 and CO gas products because of photoreformation of CH_3OH solution with graphene foam as the photocatalyst

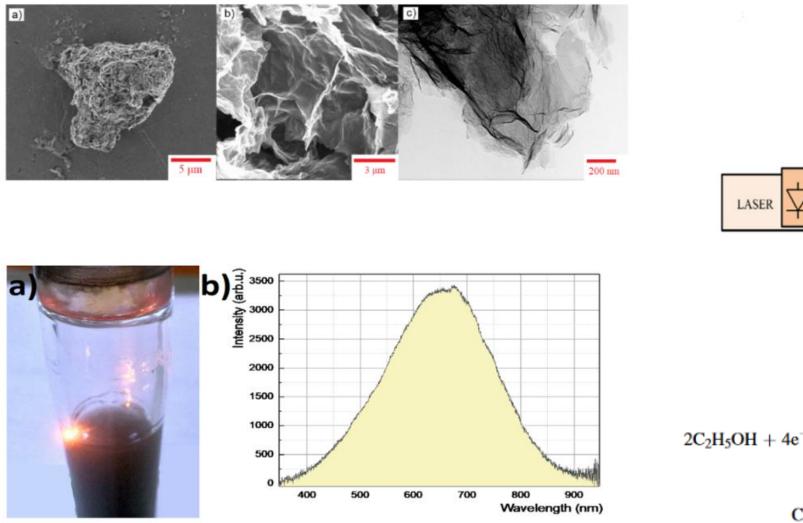

INSTITUTE OF LOW TEMPERATURE AND STRUCTURE RESEARCH POLISH ACADEMY OF SCIENCES

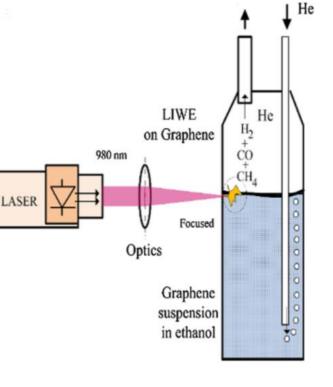
9

Be H₂ generation from **ethanol** with dispersed Graphene particles

Chemical Physics Letters 775 (2021) 138649

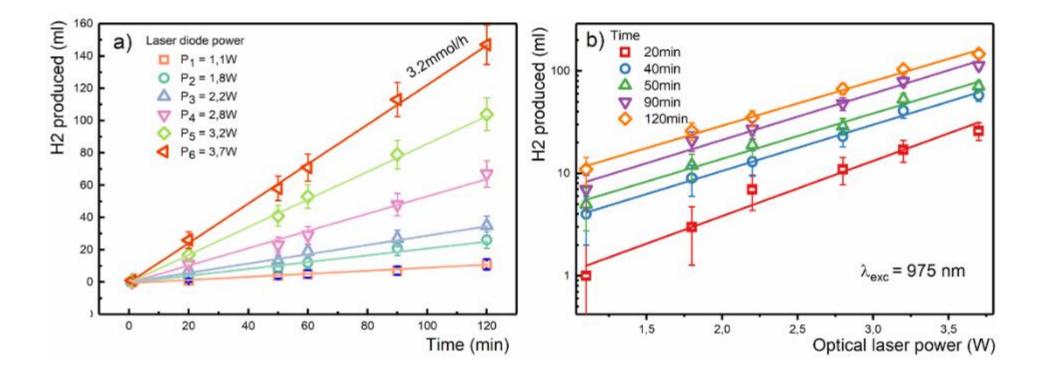
Research paper


Laser induced hydrogen emission from ethanol with dispersed graphene particles


W. Strek, W. Mista, P. Wiewiorski, R. Tomala*

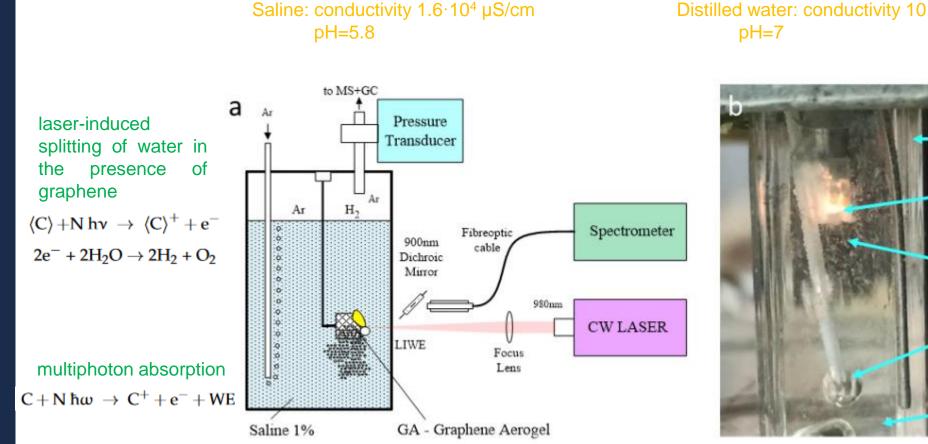
Institute of Low Temperature and Structure Research, Polish Academy of Science, Okolna 2, 50-422 Wroclaw, Poland



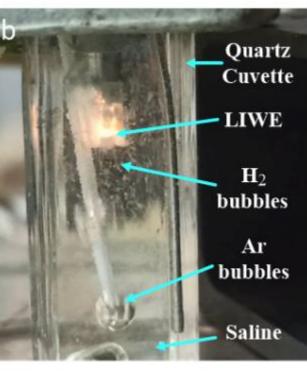

H₂ generation from **ethanol** with dispersed Graphene particles

$$\begin{array}{l} C_2H_5OH + 4e^- \rightarrow 2C_2H_4OH^- + 2H^- \rightarrow 2C_2H_4O + H_2 + 4e^-\\ \\ C_2H_4O + 2e^- \rightarrow CH_4^- + CO^-\\ \\ CH_4 + CO + h\nu \rightarrow CH_3OH + C \end{array}$$

Time evolution of generated H_2 volume from ethanol + GP solution irradiated with CW 975 nm laser diode for different excitation power (a). The power dependence of H_2 volume generated from (ethanol + GP) irradiated with CW 980 nm laser diode in different time intervals (b)



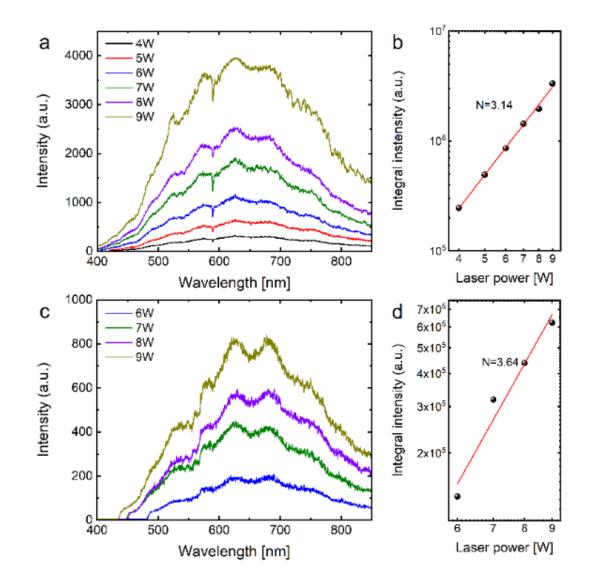
Laser-Induced Generation of Hydrogen in Water by Using Graphene Target


Wieslaw Strek, Przemysław Wiewiórski, Włodzimierz Miśta, Robert Tomala and Mariusz Stefanski * 💿

MDPI

H₂ generation from water with Graphene target

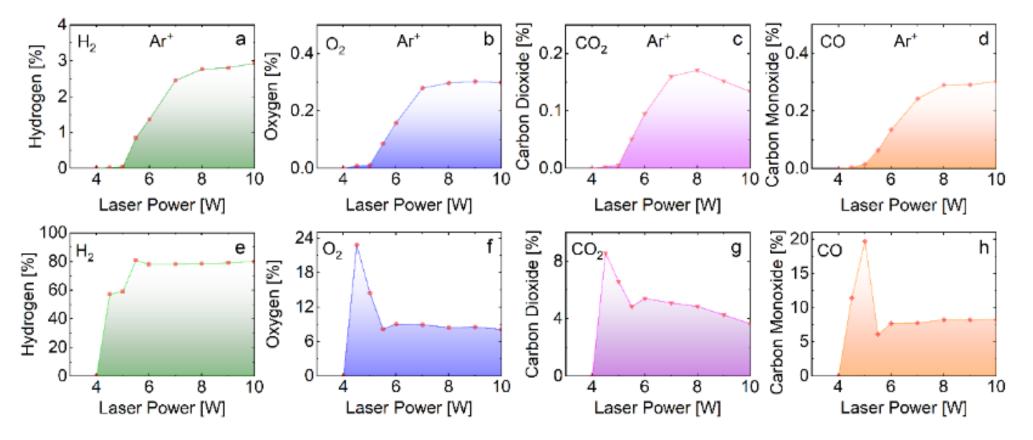
Distilled water: conductivity 10 µS/cm



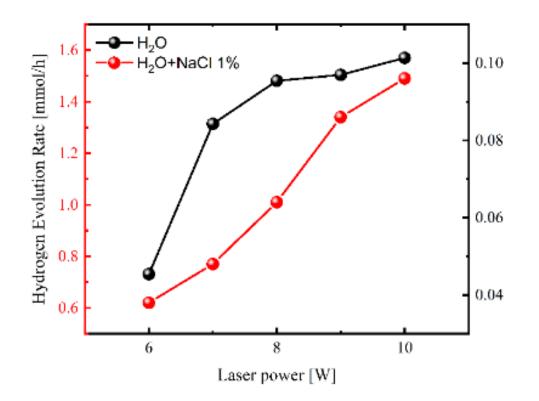
The splitting of water by electrolysis $2H_2O \rightarrow 2H_2 + O_2$

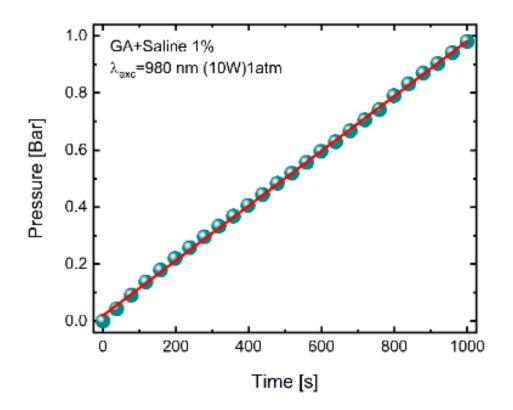
 $C + H_2O \rightarrow H_2 + CO$ $C + 2H_2O \rightarrow 2H_2 + CO_2$ $C + 3H_2O \rightarrow 3H_2 + CO + O_2$

Experimental set-up for hydrogen generation from water, using graphene as a photocatalyst (a); Photo of the cuvette of water with immersed graphene scaffold irradiated with 980 nm laser beam (b)


The emission spectra of laser-irradiated graphene foam with different excitation laser power in saline (a,b) and distilled water (c,d). The narrow dips observed at ~589 nm in the emission spectrum of saline water may be assigned to the Na⁺ ions due to the dissociation of NaCl. They were not seen for distilled water.

Ar 20 mL/min H ₂ O-Distilled Water								
Laser Power		Gas Products						
[W]	H ₂ [%]	O ₂ [%]	CO ₂ [%]	CO [%]				
10.0	47.00	10.44	11.23	31.33				
9.0	54.42 6.80		11.56	27.21				
8.0	54.30	9.05	9.50	27.15				
7.0 53.25		11.83	11.24	23.67				
6.0	55.56	7.94	12.70	23.81				


Ar 20 mL/min H ₂ O + 1% NaCl								
Laser Power		Gas Products						
[W]	H ₂ [%]	O ₂ [%]	CO ₂ [%]	CO [%]				
10.0	79.95	8.13	3.66	8.27				
9.0	78.99	8.52	4.27	8.21				
8.0	78.48	8.43	4.85	8.23				
7.0	78.21	8.93	5.10	7.75				
6.0	77.81	9.07	5.42	7.70				
5.5	80.91	8.17	4.84	6.08				
5.0	59.21	14.47	6.58	19.74				
4.5	57.14	22.86	8.57	11.43				

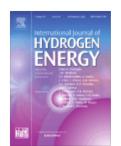


The power dependence of gas products in (a-d) and without (e-h) the presence of Ar, resulting from laser irradiation of $H_2O+1\%$ NaCl

Hydrogen evolution rate from saline and distilled water by laser irradiation of graphene aerogel

The increase in total gas pressure during water splitting in the closed cuvette after long-time exposure

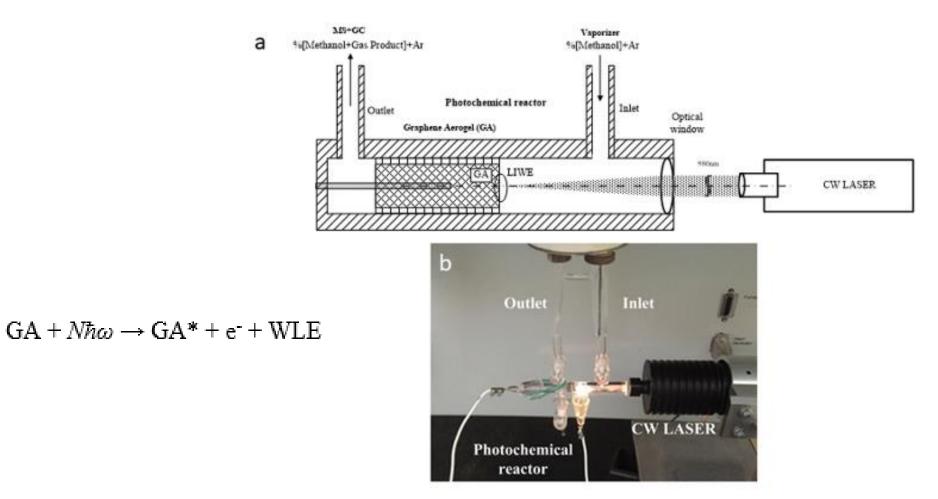
Laser-induced generation of hydrogen from methanol vapor


W. Strek, P. Wiewiórski, W. Miśta, R. Tomala, M. Stefanski

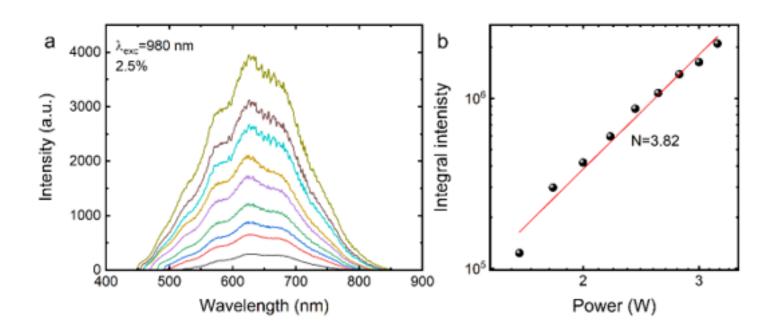
Institute of Low Temperature and Structure Research,

Polish Academy of Sciences, Wroclaw, Poland

*corresponding author: m.stefanski@intibs.pl


Submitted

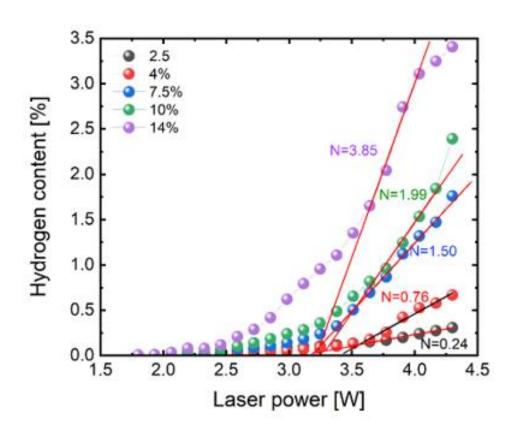
International Journal of Hydrogen Energy



B H₂ generation from **methanol vapor** with Graphene target

The experimental set-up of a laser driven photochemical reactor. LIWE means Laser Induced White Emission to hydrogen generation in methanol vapor by CW IR laser irradiation.

B H₂ generation from **methanol vapor** with Graphene target


 $CH_3OH + e^- \rightarrow H_2 + CO + CH_4$

The emission spectra of graphene aerogel in methanol vapor upon irradiation with focused beam of CW 980 nm laser diode (a). The power dependence of emission intensity in log/log plot (b).

H₂ generation from **methanol vapor** with Graphene target

Table 1. Evolution of gas products on laser irradiation of 2.5% and 14% vapor concentrations of methanol.

	Ar 20ml/min, methanol [%]							
	2.5	14	2.5	14	2.5	14	2.5	14
Laser power	Gas products						Vapor	
[W]	[W] Hydrogen H2[%]		Carbon monoxide CO [%]		Methane CH4 [%]		Methanol CH3OH [%]	
1.80	0.006	0.008	0.005	0.007	0.000	0.001	2.553	13.750
2.00	0.011	0.012	0.008	0.008	0.001	0.002	2.553	13.744
2.20	0.019	0.072	0.014	0.059	0.002	0.009	2.530	13.626
2.40	0.023	0.096	0.017	0.059	0.005	0.012	2.510	13.599
2.60	0.035	0.218	0.026	0.135	0.008	0.029	2.465	13.385
2.80	0.056	0.336	0.040	0.209	0.015	0.045	2.428	13.176
3.00	0.081	0.647	0.058	0.430	0.016	0.094	2.398	12.595
3.20	0.101	0.900	0.071	0.565	0.021	0.134	2.378	12.167
3.40	0.120	1.132	0.087	0.735	0.025	0.157	2.337	11.742
3.60	0.149	1.529	0.106	0.995	0.030	0.206	2.285	11.035
3.80	0.172	2.121	0.124	1.393	0.035	0.312	2.238	9.940
3.90	0.197	2.724	0.136	1.771	0.041	0.384	2.194	8.888
4.00	0.230	3.070	0.164	2.060	0.048	0.442	2.123	8.194
4.20	0.282	3.282	0.204	2.189	0.057	0.466	2.017	7.829
4.30	0.308	3.408	0.226	2.389	0.071	0.494	1.965	7.475

22

Be H₂ generation from **methanol vapor** with Graphene target

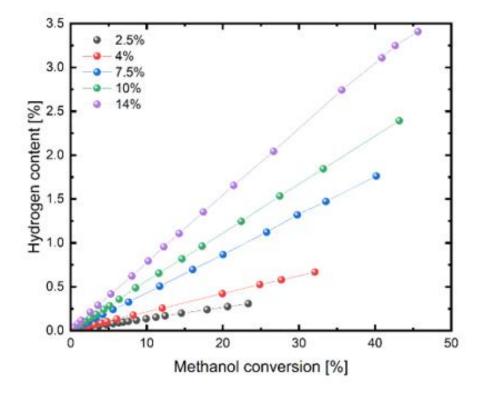


Table 2. The laser generated gas products obtained from vapor with different concentration of methanol for the highest applied laser power (4.3W).

Ar			Gas products	Vapor		
Laser power [W]	20ml/min, methanol [%]	Hydrogen [%]	Carbon monoxide [%]	Methane [%]	Methanol [%]	Methanol conversion [%]
	2.5	0.30	0.23	0.08	1.93	23
	4	0.67	0.41	0.19	2.72	32
4.3	7.5	1.76	1.01	0.26	4.50	40
	10	2.39	1.49	0.38	5.59	43
	14	3.41	2.39	0.49	7.56	46

The total conversion hydrogen obtained for different amounts of methanol by irradiation with laser diode

- Methods of laser-induced hydrogen generation from graphene immersed in 4 different carriers (methanol, ethanol, saline, methanol vapor) are presented
- The generated volume of gases was assisted by the intense emission of white light from the irradiation spot at the graphene surface
- The H₂ generation process from graphene immersed in ethanol is free of O₂ and CO₂ gases emission
- This emission followed the photon driven ionization of graphene corresponding to the sp²-sp³ hybridization of carbon
- The ionization process is assisted by bright white light broadband emission and the efficient ejection of hot electrons leading to the dissociation of alkohol molecules
- The percentage of generated hydrogen for salted water reached nearly 81% compared to distilled water at 47%

	ructure							
applied physics		optical properties gene		ral physics				
	electron spectroscopy			magnet		aterials		
chemical analysis		spectroscopy	synthesis optical spectra		materials properties	x ray diffraction		
general chemistry	physical properties	s low temperatures	chemical	physics	hydro	ogen crystals		
chemical	engineering							
diffraction crystal structure THANKYOU								
molecular structu	^{re} chemical	structure ma	gnetic structure	chemist	fluids plasma	physics		
electronic structure						metals		
high temperature optical materials		raman spectroscop						
		biomedical engineering			ical chemistry	magnetic properties		
m	aterials	luminescence	emissio	on spectroscopy	structure a	nalysis		