

Transfersteckbrief

Optische Rissverfolgung (OCT)

Referenznr.: 96679

Hintergrund

Experimentelle Bruchmechanik umfasst das Testen von Standardgeometrie-Proben mit einem scharfen Anriss und die Berechnung von geometrieunabhängigen Bruchkriterien aus der Risslänge und der kritischen Belastung für die Rissinitiierung. Diese Bruchkriterien können dann für die Vorhersage der Stabilität von Rissen in komplexen Teilen oder Geräten verwendet werden.

Technologie

In Kombination mit einer Standard-Prüfmaschine wird der Riss optisch mit einer CCD-Kamera während des Rissfortschritts verfolgt und aus der ermittelten Risslängenkurve und der gemessenen Kraftkurve der kritische Spannungsintensitätsfaktor K_{Ic} sowie die kritische Energiefreisetzungsrate G_{Ic} berechnet.

Vorteile

- ✓ automatische Bestimmung von K_{Ic} und G_{Ic}
- keine weitere manuelle Analyse der gebrochenen Probe erforderlich
- hohe Verlässlichkeit der Ergebnisse (sowohl für transparente als auch opake Proben)
- ✓ Bestimmung des wahren K_{Ic}, keine Artefakte durch nicht glatte Anrisse
- komplette Messresultate (Berechnung, Graphik, Ausdruck) in einer Minute erhältlich

Anwendung

- spröde und zähmodifizierte Harze
- Klebstoffe, Composite, Formharze
- Thermoplaste

Gesuchte Partner

FuE Partner und solche für entwicklungsbegleitende Untersuchungen

Abbildung 1: OCT mit digitaler Videokamera © Fraunhofer IAP-FB PYCO, Fotograf: Torsten George

Schlagworte

OCT, Rissverfolgung, Bruchmechanik

Entwicklungsstatus

Ready to use

IP Status

DE 100 23 752 B4

Kontakt

Dr. Stefan Kamlage Transferscout Leichtbau

Tel.: +49 3328 330 299

stefan.kamlage@iap.fraunhofer.de

http://innohub13.de