Combined Stationary Fluorescence Spectroscopy and Nanosecond Time-Resolved Laser Flash Photolysis Setup N. Lange¹, M. Regehly¹

¹ Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany

Motivation

Excited states in organic molecules occur when photons are absorbed, promoting the molecule to a higher energy level. Studying their properties and lifetimes can help the development of novel photoactive compounds used in solar cells, volumetric 3D printing and other light-driven technologies. Fluorescence spectroscopy can provide spectral information about the emission spectrum, quantum yield and intensity change factors, while laser flash photolysis reveals the dynamics and lifetimes of non-radiative excited states such as triplet-states.

Experimental Setup				Excitation Sources		Detection System	
Xenon Lamp	Delay Generator		rig. Frequency Doubled Nd:YLF Laser	Pump laser wavelength Laser repetition rate	527 nm 444 Hz - 10 kHz	Radiometric sensitivity Spectral resolution	380 - 780 nm 0.79 nm
		Generator		Laser pulse energy	0.1 - 9.6 mJ	Wavelength accuracy	± 1 nm
				Laser pulse width	232 ns	Linearity deviation	< 2.5 %
	Raspberry Pi		Fluorescence excitation /	Xenon arc lamp	Temporal resolution	2-5 ns	
				Probe beam	(75 W / 6000 K)	Time window	2.3 ms

Measured Parameters

Steady-State Fluorescence Spectroscopy:

- Fluorescence emission spectra
- **Emission** maxima
- Stokes shift

System Control for Pump-Probe Measurements

Chopper wheel design:

- Inner holes for pump beam passage and pulse picking
- Outer slots for probe beam transmission
- Slots on perimeter used by chopper controller to detect rotations **Timing behavior:**
- Six laser pulses per rotation
- A delay generator ensures synchronization of laser pulses with the open segments in the chopper wheel
- Two pulses pass through designated holes
- Effective laser frequency drops down to 148 Hz
- Pulses hit the Si-photodiode and trigger the oscilloscope
- Control and data acquisition via Python scripts on Raspberry Pi

Technische

Technical University

Hochschule

of Applied Sciences

Wildau

 \mathbf{W} | L D A U

- Quantum yield
- Intensity changes in response to external conditions

Nanosecond Time-Resolved Laser Flash Photolysis:

- Excited-state lifetimes
- Transient absorption spectra (ΔOD)
- Kinetics of photophysical processes

E-Mail: nele.lange@th-wildau.de

Effect of quenchers on triplet-state decay

Fluorescence Emission Spectrum

Triplet State Lifetime

This setup combines steady-state fluorescence spectroscopy with nanosecond time-resolved laser flash photolysis in a compact system. All components can be easily replaced or adapted for specific experimental requirements. A custom-designed chopper wheel eliminates the need for complex time control electronics. Initial measurements with *tetraphenylporphyrin* demonstrated reliable results for fluorescence emission and triplet-state lifetime.

Tel.: +493375 708-355

Acknowledgements

We sincerely thank LTB Lasertechnik Berlin for providing the Coherent Indigo DUV laser system used in this study. ASERTECHNIK BERLIN

Research Group Photonics and Optical Technologies

Homepage: www.th-wildau.de/photonik