

Baltic ForBio

Regional Wood Fuel Supply for Small Bioenergy Plants

Case Study Altlandsberg:

- Requirements of small-scale bioenergy plants regarding forest fuel/wood chips supply from local sources
- Organizational and technical solutions in supply chains
- Challenges and supply/ business models to supply small bioenergy plants with forest fuel

Case Study "Altlandsberg"

Requirements – Quantity and Origin of Wood Fuel

Heat production nearly 300 MWh per year

Wood chip consumption: ~ 400 bulk m³ per year

Main sources of wood fuel in the Altlandsberg region:

- Landscape preservation measures (incl. maintanance work, parks, gardens)
- Fruit tree plantations
- Forestry

Requirements – Quantity and Origin of Wood Fuel

Requirements – Delivery

- Bioenergy plant in the old depot, part of the historic ensemble restaurant vis-à-vis, tourist shop next door
 → no storage facility for wood chips on the premises

Requirements – Delivery

Wood chip delivery in special containers, that can be linked to the conveyer system of the bioenergy plant

When a new chip delivery is expected,

- the empty exchange container will be retrieved by a container truck
- filled at the external biomass storage lot
- brought back and swapped with the current container

Photos: S. Ruebsam

Requirements – External Storage Place

- Procurement of rawmaterial
- Processing
- Storage
- Quality management
- Secure short-term supply

Requirements – Use of Available Equipment

Felling &Tending

Harvest

Processing

Storage

Transport

Bioenergy Production municipal forest, orchards, trees rows, woods, short rotation coppices, private gardens, parks

forest harvester, forwarder, tractor with felling head, special felling equipment, chain saw

chipper, screening unit, dryer / storage facilities for drying

storage yard, storage facility (roofed or open top), bunker silo, storage building

means of transport for round wood and/or for wood chips (bulk transport, container transport)

Requirements – Wood Chip Quality

Specification in the instruction manual

• Wood chips, pellets, wood briquets or saw dust

Water content: 30% max.

Ash content: 1% max, 0.5% ideal

Particle size

• maximal length of particles: 200 mm

• main fraction (>= 60%): between 3.15 mm and 45 mm

• <3.15 mm: 10% max

Requirements – Wood Chip Quality

Operating experience

- Water content > 30%
 - bad combustion
 - increased emissions
- Excess length of particles
 - Alarm caused by photo sensor
 - Congested spiral conveyors
- Impurities like stones and metal
 - Congested spiral conveyors
 - Congested conveyor for ash
- Excess ash content
 - Increased quantities of ash
 - Increased wear of plant

Discharge screw conveyor of the bioenergy plant in Altlandsberg with small partcles/dust from low-quality wood chips

Requirements – Overview

- Logistics
 - External storage place
 - Specific containers for transport and storage at the bioenergy plant
 - Specific delivery process
 - Delivery must arrive reliably in time
- Quality of Wood Chips

Bioenergy plant sensitive to

- Water conten
- Particle size (too small, too large)
- Impurities
- High content of bark and green material

Quality Management – Choice of Rawmaterial

Source: Hartmann, H.; Kaltschmitt, M.; Hofbauer, H. (2009), adapted

wood chips from harvesting small trees under power line near Altlandsberg

wood chips from felling trees for landscape preservation (pictures: H. Hartmann)

Quality Management – Choice of Rawmaterial

Quality Management – Choice of Rawmaterial

Quality Management – Chipping Technology

Drum chipper

Advantages

- Quality of chips
- Size of chips can be influenced reliably
- Chipping of many materials (also large roundwood and brushwood)
- Performance

Disantvantages

- High investment costs
- Service and maintanance
- Experienced operator required

Photos: M. Schultze

- Increasement of heating value
- Improvement of combustion behavior and decrease of noxious emissions
- Improvement of stability of biomass during storage (lowered decomposition rate)
- Lowered transport weight

- Natural drying
 - unchipped wood fuel
 - wood chips
- Artificial drying
 - by air and heat supply
 - by mechanical squeezer

Natural Drying – Unchipped Wood Fuel

- Piled roundwood or logging residues
- Usually in near the forest road but also on storage yards
- Drying depending on
 - exposition of storage place (wind, sun)
 - diameter and tree species
- Duration of storage and drying > 6 months
- Advantages:
 - Reduction of water content from 50 % to about 30% possible
 - Low biomass decomposition during storage of unchipped wood
 - Dropping of needles, old leaves, dry-sticks/ brush-wood
 - > reduction of ash content
 - ➤ Increasement of storage stability of wood chips
- Disadvantages
 - Forest pest control/infestation of piles

Source: Hartmann 2019

Natural Drying – Wood Chips in Piles

Risk of

- Fast biomass decomposition
- Mould formation
- Spontaneous combustion

Depending on:

- Water content: wood chips should have a water content <40% when putting them into storage
- Particle size: circulation of air better when chips are not too small
- Content of needles/leaves and bark, which increase biological activity
- Aeration of wood chip pile
- Form of wood chip pile and protection against rain

Source: Hartmann 2019:

Natural Drying – Wood Chips in Piles - Storage forms to reduce risks

- Protection against rain
 - storage under roof:
 - coverage with semi-permeable material in a cone-shaped chip pile
- Improvement of air circulation in wood chip pile
 - Exposition and model of storage facility: lean-to roof open for aeration
 - Storage on floor with slits or wholes and space for air circulation underneath
 - Height of wood chip pile limited to 5 m

Artificial Drying by Air and Heat Supply

Advantages:

- Fast drying , no biomass decomposition
- Avoiding of storage risks (mould, biomass decomposition,...)
- Homogenous and controlled drying to needed water content
- Drying to water contet <20 %

Disadvantage

- Energy use for heat supply and ventilation
- Additional costs
- Logistical expense

batch drying in modified bulk containers using heat from a biogas plants; picture: www.energieholz-brune.de

Source: Hartmann 2019:

Quality Management – Natural Drying

Quality Management – Screening

- Mobility of screening unit
- Technology

Mobile Starscreen

Mobile Drumscreen

Quality Management – Storage Place, Mixing, Loading

Quality Assessment

Water Content

Size of Wood Chips

Sieving of wood chips for simplified analysis of particle size – quality assessment on the premises of Castle Property Altlandsberg

Recommended Literature

https://mediathek.fnr.de

HANDBUCH ZUM QUALITÄTSMANAGEMENT VON HOLZHACKSCHNITZELN

dis

bioenergie.fnr.de

HANDBUCH BIOENERGIE-KLEINANLAGEN

Gefördert durch:

GENR

aufgrund eines Beschlusses

Baltic ForBio

aufgrund eines Beschlusses des Deutschen Bundestages

Bundesministerium für Ernährung und Landwirtschaft

Recommended Literature

www.trea.ee/eng/wood-fuel-user-manual/

Wood Chip Supply Chains

Conclusion: Supply Chain Example Altlandsberg

- Harvest in forest and landscape
- Storage near forest road > 3 6 months
- Chipping by drum chipper
- Loading directly into truck
- Transportation to storage place
- Storage and natural drying under roof several weeks – months (depending on season and weather)
- Mixing of wood chips from different raw materials
- Mixing of wood chips before loading into delivery container and quality check by supplier
- Quality check at bioenergy plant (simplified test procedures) and continuous documentation of specific values (heat production, quantity of ash, disruptions of process)
- Long-run contract with local wood chip company

Chipping of logging residues (above) and roundwood (below) into transport vehicle

Baltic ForBio

Contact

mareike.schultze@th-wildau.de mike.lange@th-wildau.de

Reaearch Group Transport Logistics at TH Wildau www.th-wildau.de/balticforbio