Voltammetric activity assay for the human catechol-O-methyl transferase at fluorine doped tin oxide

Gero Göbel¹, Anja Talke², Uwe Ahnert², Fred Lisdat¹

1) Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany 2) BioTeZ Berlin Buch GmbH, Berlin, Germany

1 Introduction

The catechol-O-methyl transferase (COMT) has become of research interest since it is involved in the dopamine metabolism. This is disturbed in several neurodegenerative diseases such as Morbus Parkinson. Thus, a fast and reliable method for the activity measurement of this enzyme is needed. One approach is focused on the direct detection of substances involved in the biocatalytic conversion.

Due to their redox activity catecholamines can be detected by electrochemical methods. Carbon-based electrodes reveal a high sensitivity for dopamine and other catecholamines and are frequently used for their detection. However, often polymerization products of the oxidized dopamine cause a passivation of the electrode surface. Another drawback is the oxidation current from interferents in physiological samples superimposing the current signal from dopamine at carbon electrodes.

With this respect fluorine doped tin oxide (FTO) is investigated as electrode material for activity determination of the COMT.

2 Fluorine doped tin oxide

Properties

- **Electrically conductive**
- Sheet resistance 7 Ω/sq
- Chemically inert
- Mechanically hard
- High-temperature resistant
- Less expensive than indium tin oxide

4 Discrimination of dopamine metabolites at CNT and FTO

DPV at SWCNT-modified carbon

DPV at **FTO**

5 Sensing characteristics of FTO for dopamine detection

Sensitivity

Stability

Assay mix

8 Conclusions

Ascorbic

- FTO provides a good basis for the electrochemical detection of dopamine
- Linear dependency of the electrochemical signal on the concentration of dopamine up to 1 mM
- Voltammetric dopamine detection is not disturbed by the precursor L-Dopa and by typical interferents in physiological samples – ascorbic and uric acid
- Oxidation signal of dopamine is significantly more stable compared to the most reported sensor constructions
- FTO allows the construction of reusable dopamine sensors
- FTO can be applied for activity measurements of the COMT

Acknowledgement

The financial support by the BMWi (project: 16KN041836) is gratefully acknowledged.