

SENTECH Instruments GmbH

SENTECH

MIR ELLIPSOMETRY

- FROM FINGERPRINT TECHNOLOGY TO IN-DEPTH OPTICAL ANALYSIS -

Online Symposium "Functional Coatings, Manufacturing, Metrology & Application" TH Wildau - 9th March 2021

Dr. Robert Meyer Application | Thin Film Metrology SENTECH Instruments GmbH

Erfolg durch Leistung

SENTECH in brief

SENTECH

- Private company founded in 1990
- Located in Berlin (Germany)
- Extension building in 2020 with > 100 employees
- ISO 9001 certified

Business fields

- Thin Film Metrology
- Plasma Process Technology
- Photovoltaics
- Atomic Layer Deposition

Strengths

- Innovation and Know-how
- High quality products
- Application Support
- Service
- Worldwide user & distributor network

Thin Film Metrology - What is Ellipsometry used for?

- Ellipsometry Ellipsometry is an indirect optical measurement technique using
 - Reflection of polarized light
 - Oblique angles of incidence at the sample surface
 - It measures the state of polarization after reflection at the sample
 - The reflected light is elliptical polarized where '*Ellipsometry*' got its name from
 - Non-destructive and non-invasive
- **Measurement** Measurement results are the **ellipsometric angles** Ψ , Δ
 - Ψ = reflection ratio between p- and s-polarized components of the polarized light
 - Δ = phase shift between p- and s-polarized components of polarized light
 - **Results** Requires **building an optical model and a fitting procedure** to determine
 - Film thickness d
 - Optical constants n and k (and related parameters like compositions or semiconductor bandgaps)
 - Other parameters like surface roughness or interfaces

Thin Film Metrology - Applications

Industrial

- Semiconductor and Photovoltaic Industry
 - Optical Industry
 - Glass and Chemical Industry
 - Automotive
 - Steel Industry
- Research
 - Photovoltaics
 - Physics, (Laser) Optics, Solid State Physics
 - (Bio) Chemistry covering in-situ applications

Sample Structures

- Substrates
- Single layer/substrate
- Multiple layer/substrate

Film Thickness Range ~ ~ 0.3 nm (monolayers) ... ~100 μm

- Typical Materials
 - Metals
 - Semiconductors

Dielectrics

- Photoresists
- Glass

(e.g.: SiO₂, Si₃N₄, TiO₂) (e.g.: Cu, Au, Ag, Cr, alloys) (e.g.: IV, II-VI, III-V, organic) (e.g.: SU-8, PMMA) (e.g.: Quartz, BK7)

This variety requires different types of ellipsometers, especially different spectral ranges... What has SENTECH to offer?

durch Leistung

SENTECH Spectroscopic Ellipsometer Family

durch Leistung

1600 – 25000 nm

SENDIRA – Infrared Spectroscopic Ellipsometer

Spectral resolution Light Source Detector

Spectral Range

AOI Range

Sample stage

Meas. Speed

Goniometer

Software

Beam diameter

6000 – 400 cm⁻¹ $32 - 1 \text{ cm}^{-1}$ Glow Bar Peltier cooled DTGS (Deuterated Tri-Glycine Sulfate) MCT detector optional 40° - 90° Height/Tilt adjustable 150 mm stage Sample Alignment ACT typical 5 -10 min for full spectra motorized, 40 - 90 deg / 0.01 deg steps typ. 5 mm SpectraRay/4

Benefits of SENDIRA MIR spectroscopic ellipsometer

- Measurement of two parameters: amplitude ratio and phase difference ٠
- Sensitive to mono layers and orientation of molecules
- Combines SE with R and T measurements

Applications in MIR Ellipsometry

- IR region is very attractive for both ellipsometry and conventional spectroscopy
- Strong material activity in infrared due to:
 - Contributions of electronic transitions (NIR)
 - Free carriers, molecular rotation and vibration transitions (MIR)
 - Phonon modes (FIR)

Selected Applications

- Vibrational spectroscopy (chemical analysis)
- Detection of impurities (e.g. -H, -OH or -CH)
- Optical constants in the MIR (MIR optical devices)
- Thin metallic layers (NiCr)
- Doping and doping profiles in semiconductors (> 10¹⁷ cm⁻³)
- Detection of very thin films (hydrogen terminated Si, organic monolayers)
- Composition analysis of compound semiconductors (HgCdTe (MCT))

ps://mclearwater.com/most-common-impurities-found-in-tap-water-m p://terpconnect.umd.edu/~bekane/SiOC/index_files/Page336.htm

Application – Vibrational Spectroscopy & Detection of Impurities

Applications in MIR Ellipsometry – Vibrational Spectroscopy

durch Leistung

Applications in MIR Ellipsometry – Detection of Impurities

Application – Determination of optical constants in MIR

Applications in MIR Ellipsometry – Optical Constants in MIR

Erfolg

durch Leistung

Example

SENTECH

• MIR optical devices like Quantum Cascade lasers (QCLs) operate in the MIR spectral range (> 3.5 μm)

- QCL require the exact knowledge of optical constants for the semiconductor layers and dielectric coatings
- · Literature optical constants in the MIR can be whether unavailable or inaccurate
- Due to the QCL design wavelength in MIR, SENDIRA measurements enable accurate determination of n,k

tung

Application – Percolation

14

CENTE

- Initial Situation
- The NiCr films starts growing in small isolated islands
- The NiCr islands optically behave like a dielectric material
- No or extremely low free carrier concentration is observed
- The islands grow and connect to each other
- Free electron gas is created and carrier concentration increases
- Finally a dense film is established
- Measurements
- NiCr / float glass with different film thickness were prepared by magnetron sputtering
- Thickness range 1.1 10.0 nm
- 4 point probe (4pp) (Jandel)
- Spectroscopic ellipsometry:

DUV - NIR (190 nm - 2500 nm)

- MIR (1600 nm 25000 nm)
- The samples were roughened on the backside

Growth

Nic

Nominal Thickness ~1.1 nm

Film shows low k value in the MIR due to weak Drude absorption
→ Film has low conductivity

SENT

Nominal Thickness ~10 nm

- Films shows a strong k value especially in the MIR due to Drude free carrier absorption
- \rightarrow Film has strong conductivity

Drude Free

Carrier

- Absorption
- The Drude formalism allows a connection between electrical and optical behavior of a conductive film
- It describes the absorption of free carriers which typically takes place in the MIR NIR spectral range

The sheet resistance is calculated using the film thickness d and the Drude parameters ω_p^2 and ω_τ

- The carrier concentration is rising strongly up to 3 nm NiCr film thickness
- For film thickness > 3 nm the carrier concentration shows a weaker slope
- The carrier mobility is strongly rising up to 3 nm
 - This indicates a growth of metallic islands up to 3 nm NiCr film thickness
 - The growth of these islands seems to stop at 3 nm NiCr film thickness

SENI

Conclusion

The SENTECH infrared spectroscopic ellipsometer SENDIRA is an ideal tool for IR spectroscopic analysis of bulk ٠

materials, films, layer stacks and sample surfaces

- The high spectral resolution of the FTIR allows access to high film thickness of up to 20 µm •
- Applications from research and industry were presented benefiting from the FTIR advantages .
 - Detection of hydrogen content in SiNx films ٠
 - Ternary III/V semiconductor composition •
 - Percolation of extremely thin NiCr films •
 - Detection of thin organic materials •
 - Anisotropic substrates •
 - Thick Si films for SOI •

Thank you for your attention!

SENTECH Instruments GmbH (Berlin)

SENTECH GmbH (Krailling near Munich)