Atomic layer deposition of P and Sb doping sources for the diffusion into 3D germanium structures

M. Silinskas, V. Begeza, D. Hagen, M.Lisker, B. Kalkofen, E.P. Burte – 09.03.2021

Outline

General overview

1. Motivation of ALD doping

N SE

- 2. Deposition technique
- 3. Results
 - Deposition
 - Characterization

4. Conclusions

1. Motivation

Transistor scaling

- FinFETs
 - State of the art technology
- Lateral Nanowire FETs
 - Most closely resemble current FinFET architecture
 - Require non-line-of-sight deposition and etch
- Vertical Nanowire FETs
 - Separates channel length from pitch
 - Could enable direct III-V growth on Si with minimal dislocations
- Beyond CMOS
 - 2D materials
 - Tunnel FETs
 - Spin FETs

1. Motivation

Comparison of conformity for 3D USJ with different doping methods

Doping on 3D structure will be a challenge due to its directionality during implantation

To form shallow junction on 3D structure, reducing ion energy & increasing ion scattering will be necessary

ALD doping by deposition of dopant will be an alternate option

- Predeposition by atomic layer deposition (ALD)
- + Rapid thermal annealing

Atomic layer deposition for doping (ALD²)

N SF

2. Deposition techniques

Plasma enhanced ALD (PEALD)

- "Oxford FlexAL" for phosphorus doping with in-situ QCM
 PH₃, N₂, O₂, O₃, H₂O
- 2. "Sentech ALD" for antimony doping with in-situ ellipsometer
 - TrisDMASb ((Sb(N(Me₂)₃), H₂, O₂

SE

N SE

PEALD of phosphorus source

PEALD of phosphorus source from PH₃ plasma

N SE

1) Relative high deposition rate – 0.1 nm/cycle 2) Not sufficient conformity: for gaps (16 nm wide and 240 nm deep) d_{Bottom}/d_{Top} and $d_{Wall(200nm)}/d_{Top}$ - less than ~0.2

PEALD of phosphorus source from PH₃ and O₂ plasma

MSE

1) Very low deposition rate – 0.002 nm/cycle 2) Very good conformity: for gaps (16 nm wide and 240 nm deep) d_{Bottom}/d_{Top} and $d_{Wall(200nm)}/d_{Top}$ - (~1) 3) Sensitive to moisture

PEALD of phosphorus source from PH₃ and N₂ plasma

XPS (no sputtering): P_3N_5 ($P_3N_5O_x$)

1) Higher deposition rate - 0.01 nm/cycle
 2) Not sensitive to moisture

Further investigations needed

SE

SE

PEALD of antimony source

(difficult to flash)

MISE

PEALD of antimony source (SbO_x)

1) conformal deposition for gaps (40 nm wide and 200 nm deep)

- 2) d_{Bottom}/d_{Top} and $d_{Wall(200nm)}/d_{Top}$ ~1
- 3) high deposition rates
- 4) not sensitive to the air

Flash lamp annealing

Simulated temperature

1) Doping layer temperature (simulated) depends on

- film thickness
- film reflectivity
- flash pulse length (duration) and power
- 2) Germanium crystal annealing (simulated) depends on
- flash pulse length
- doping layer temperature

SIMS: Sb

- 1) Doping profile depends on the temperature and pulse time
- 2) Sb shallow doping (5 10 nm)
- 3) Surface layer concentration about $10^{21} 10^{20}$ at/cm³

SIMS: P

- 1) Doping profile depends on the temperature and pulse time (not shown)
- 2) P source (compare with P_2O_5) little higher doping level and doping depth
- 3) P shallow doping (10 20 nm)
- 4) Surface layer concentration about $10^{21} 10^{20}$ at/cm³

4. Conclusions

Conclusions

1. Plasma ALD is a suitable technique for conformal deposition of the P and Sb doping sources.

NSE

2. Doping level $10^{21} - 10^{20}$ atom/cm³ can be achieved using flash lamp annealing.

Thank you for your attention.

http://www.mpi-halle.mpg.de